
#CappCon2016

Cappuccino  
+ 

Good Practices

CappCon2016

Christophe Serafin

• Software Engineer  
at Nuage Networks  
http://nuagenetworks.net/ 

• Working with Cappuccino  
for 3 years 
http://www.cappuccino-project.org/

http://nuagenetworks.net/
http://www.cappuccino-project.org/

CappCon2016

Summary

• Structure & Organization of a big application

• Use Git submodules for libraries

• Cappuccino environments

• Organize your xib files

• Compile & deploy an application

CappCon2016

Structure & Organization of a big application

!

CappCon2016

Organize your files

• Keep folder hierarchy simple

1. Models - define your object & relations

2. Resources - holds your .xib files and images

3. ViewControllers - Define your controllers

4. Libraries - Contains all external libraries

5. Frameworks - Symlink or copy from your $CAPP_BUILD  

• Create generic folders if necessary  
 
Examples: DataViews, Associators, Abstracts etc.

CappCon2016

Organize your files

CappCon2016

Gather your files

SKList.j

SKTask.j

SKUser.j

Models.j
@import "SKList.j"
@import "SKTask.j"
@import "SKUser.j"

https://github.com/nuagenetworks/monostack-example/tree/master/Client

https://github.com/nuagenetworks/monostack-example/tree/master/Client
https://github.com/nuagenetworks/monostack-example/tree/master/Client

CappCon2016

Git Submodules

!

CappCon2016

Libraries

• Improves reusability

• Use them as submodules in your application

• Open your mind and share your code to the
community

CappCon2016

Advantages

• Submodule is represented as a commit hash in
your code

$ git status
On branch master
Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git checkout -- <file>..." to discard changes in working directory)
 (commit or discard the untracked or modified content in submodules)

 modified: Libraries/NUKit (modified content)

• Link your code to a specific branch or version of a
library to manage multiple versions of your product

CappCon2016

Branching model

Product Libraries

master
Bambou @ 48d1e82
Cappuccino @ 7c21ed2

NUKit @ a2a0538

release
Bambou @ 7c4e22c
Cappuccino @ 7c21ed2

NUKit @ 0034ca1

CappCon2016

Cappuccino Environments

!

CappCon2016

Cappuccino Environments

• Create a dedicated environment for each branch of
your code

• Works exactly the same as virtualenv for python

• capp_env command installed with Cappuccino

CappCon2016

Set up your environments

// Add cappenvs environments at your product root level 
$ mkdir .cappenvs 
$ mkdir .cappenvs/environments 
$ cd .cappenvs/environments 
 
// Create an environment for master and release branches 
$ capp_env -p master 
$ capp_env -p release

// Activate an environment will update your current PATH  
$ cd master 
$ source bin/activate

CappCon2016

Auto-Cappenvs

Script to switch from an environment to another
depending on the current branch of your code

$ cd Client 
(master)$

(master)$ git co release  
 Switched to branch ‘release’

(release)$ git co master 
 Switched to branch ‘master’

(master)$

CappCon2016

Organize your xib files

!

CappCon2016

Shared Views

• Certain view parts can be used multiple times in
your product

• Reduce cib files that should be loaded in your
application

• Gather shared views in a single xib file

CappCon2016

Shared Views

CappCon2016

Shared Views

• Create a CPViewController that contains multiple CPView

• Declare an @outlet in an object that inherits from
AbstractDataViewLoader (NUKit)

DataViewsLoader.j
(CPViewController)

SKTaskDataView.j
(CPView)

SharedViews.xib

CPView

CappCon2016

Compile & Deploy an application

⋆

CappCon2016

Compile & Deploy

• objjc is transforming Objective-J code to
Javascript (extention .o)

• flatten creates a single-compiled file for the whole
application (extension .sj)

• press tries to reduce the size by removing the
unused parts

• jake deploy is doing everything for you !

CappCon2016

Jake

• jake install 
Builds and installs Cappuccino into the directory $CAPP_BUILD

• jake debug / release 
Builds the debug / release version and place the generated files in
Build subdirectory

• jake clean 
Cleans the Build subdirectory

• jake deploy 
Builds the release version and run the tool chain to provide an
optimized version of the application (Build/Deployment/*.ready)

CappCon2016

buildApp Script

$./buildApp -h  
Usage: buildApp [options]
Options: 
 -h, --help Show this help message and exit 
 -c, --cappuccino Build and install Cappuccino  
 -k, --nukit Build and deploy NUKit 
 -d, --project Build and deploy project 
 -a, --all Build and deploy everything without Cappuccino  
 -E, --everything Build and deploy everything + Cappuccino  
 -L, --libraries Build all libraries 
 -v, --verbose Print commands output 
 -C, --clean Clean all libraries and project 
 --clobber Clean all libraries, project and cappuccino  
 --debug Generate a debug deployment build

https://github.com/nuagenetworks/nukit/tree/bambou/Tools/nukit

https://github.com/nuagenetworks/nukit/tree/bambou/Tools/nukit
https://github.com/nuagenetworks/nukit/tree/bambou/Tools/nukit

CappCon2016

Other Tips

!

CappCon2016

Tips

• Organize your code using pragma sections  
#pragma mark - 
#pragma mark Initialization | API | Utilities | Actions | Overrides | Delegates

• Create and respect a naming convention 
@outlet fieldName  
@implementation SKTask 
- (CPArray)permissionsForObject:(id)anObject 
- (@action)changeCheckboxStatus:(id)aSender

• Write conditions as variables  
var shouldHide = [user hasAuthorization] && ([anObject isValid] || [anObject address  
[buttonCountry setHidden: shouldHide];

• Define delegates methods to provide a flexible API  
[_delegate moduleContext:self willManageObject:_editedObject];  
// … 
[_delegate moduleContext:self didManageObject:_editedObject];

CappCon2016

Tips

• Use User Defined Runtime Attributes  
to avoid @outlet declaration

• Optimize your medias  
Create a Flat Theme and use imageOptim

• Avoid xib conflicts

• Git ignore autogenerated files  
Frameworks, cib, Build…

• Never write @import <AppKit/AppKit.j>

• Join us on Gitter and follow Cappuccino News

Cappuccino

Thanks !
#CappCon2016

